
Using OpenCV with CDP Studio
CDP Studio supports importing and using third-party C++ libraries, like OpenCV.

Importing OpenCV
Select File -> Import Library…

Next a dialog appears where one must specify headers directory and binaries. OpenCV header files

are in include directory.

• For Windows release binaries are in opencv-windows-release/x86/mingw/bin folder and

debug versions in opencv-windows-debug/x86/mingw/bin. Select and add all .dll files.

• For other targets binaries are in lib directory. Select all .so files and add same files for both

debug and release versions.

Note: make sure to select a toolkit that matches the CDP version of your project.

Note: Import Library… dialog must be run for both host and target platforms. For example, when

developing a CDP system using OpenCV on Windows and deploying it on Raspberry Pi, the dialog

must be run once for Windows binaries and once for Raspbian binaries. Make sure to set same Name

each time (e.g. “opencv”).

Using OpenCV in CDP library

Adding dependencies
To use OpenCV in your CDP application one should first create a CDP library project and add a CDP

Component to it. Next one must add OpenCV dependency to this library project. For that go to Code

Mode, right click on the library project and select Add Library…

In the dialog select an External library and from the list the name you entered when running Import

Library… wizard, e.g. “opencv”.

Next open again the Add Library… dialog, select CDP library and from the list CDP2QtLib.

Code and multi-threading
The UI part of OpenCV must always be accessed from main thread that runs the UI event loop. Do

not create windows from CDP thread (like the Process() function in CDP Component). One easy way

to execute code on UI thread is to use Application::RunInMainThread() function that takes lambda as

an argument.

Also note that to access objects living in CDP Component thread (like CDPProperty, CDPSignal,

CDPParameter) from UI thread, one should first lock component mutex or use

RunInComponentThread() function.

#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <CDPSystem/Application/Application.h>

void MyComponent::Activate()

{

 Application::RunInMainThread([&] { Loop(); });

}

void MyComponent::Loop()

{

 m_capture.read(m_currentFrame); // Read camera image

 {

 OSAPIMutexLocker(GetMemberAccessMutex()); // Locks component mutex

 for (auto filter : m_filters) // m_filters lives in component thread

 filter->applyFilter(m_currentFrame);

 }

 cv::imshow(windowName, cameraFeed);

 cv::waitKey(30);

 Application::RunInMainThread([&] { Loop(); });

}

Adding Component to CDP Application
The pre-built OpenCV binaries bundled with this guide have Qt dependency. Therefore, they work

correctly only when dragged into a CDP GUI Application, which always bundles Qt. After creating a

System project, go to Configure Mode, right click on the System and select Add GUI Application…

After that, drag your CDP Component into from Resource pane into your CDP GUI Application. By

default, CDP GUI Application includes an empty form called mainwidget for creating your own UI. If

you have no need for it, remove the CDP2Qt subcomponent.

Example
An example project using OpenCV is available at https://github.com/CDPTechnologies/OpenCV-

ColorTracking. Make sure to also read the project wiki.

https://github.com/CDPTechnologies/OpenCV-ColorTracking
https://github.com/CDPTechnologies/OpenCV-ColorTracking
https://github.com/CDPTechnologies/OpenCV-ColorTracking/wiki

